
Introduction

xmbase-grok was born as \grok", but the name was changed later to this more descriptive variation. It is

a simple desktop database manager, intended to manage small databases such as phone lists, diaries, todo

lists, URL lists, etc. A user interface builder is integrated in xmbase-grok to allow customization of the

presentation of the data in the main window. A variety of user interface elements such as text entry �elds,

checkbuttons, function buttons, and bar charts ca be placed in the database-dependent part of the main

window, called the card. xmbase-grok comes with a selection of pre-built applications.

The database itself is organized in a table with rows and columns of strings. A card presents one row of the

database. For example, the phone list stores one person per row, with various columns for name, address,

phone number, and so on.

In addition top the card, the main window also displays a scrollable summary listing containing one line per

card, allowing fast lookup of cards. Pressing on a line in the summary puts the corresponding row into the

card part of the window. The main window also contains controls for searching of cards, and for adding and

deleting cards. There are several methods for searching: by keyword, using the built-in query language, or

using customizable standard queries.

This chapter is intended as a user manual. For details on the implementation of databases, and for advanced

operations such as building new applications with xmbase-grok, refer to the chapter \Creating and Editing

Forms".

Starting xmbase-grok

From the command line, grok can be started as grok with no arguments. This will bring up an empty card;

a database must then be chosen from the Database pulldown. The database to load can be speci�ed on the

command line, such as grok phone.

The -t and -T options allows queries printed to stdout, without starting the interactive graphical user

interface. Queries may use simple keyword lookups, or may use the query language:

grok -t phone thomas

grok -t todo '(f status == "t"g && f assigned == userg)'

For details on the query language used in the second example, refer to the \Expression Grammar" chapter.

The �rst example looks for the given keyword; case distinctions are ignored. The author of the application

controls which columns of the database are searched for keywords. Note the single quotes enclosing the

query to protect blanks, parentheses, and double quotes from the shell.

xmbase-grok supports the following command-line options:

grok [options] [database ['query']]

-h print a short usage message listing the available options.

-d print the default X resources to stdout and exit. The output can be appended to the local�/.Xdefaults

�le or other resource �les, after changes to customize xmbase-grok's behavior.

-v print the version number of xmbase-grok.

-t Perform query and print the matching cards to stdout. If query is missing, print all cards. The

database argument is mandatory for -t and -T.

-T Same as -t, but omit the header line. This is useful when the result is piped to other Unix utilities.

1

-f Do not fork on startup. This is mainly a debugging tool; it prevents xmbase-grok from putting itself

into the background.

-r Restricted grok. The form editor is disabled to prevent inexperienced users from inadvertently starting

the user interface builder (called the \form editor") and modifying the current database format. The

same e�ect can be achieved by linking grok to rgrok; running rgrok has the same e�ect as running

grok -r.

The Main Window

When xmbase-grok is started, it presents a four-part window: a search area for entering keywords and query

expressions, the summary, the card, and a row of buttons for creating, deleting, and modifying cards. There

is also a menu bar with pulldown menus.

When xmbase-grok is started up without arguments, it is �rst necessary to choose the database to display

from the Database pulldown. This pulldown presents all �les in the �/.grok directory that end with the

extension .gf, with the extension removed. (If a new database is created, it is not necessary to choose a

database, see next chapter.) Sometimes, the Database pulldown shows some databases more than once. The

reason is usually that the database is found in two di�erent places or using di�erent paths; the duplicates

can be eliminated by enabling the \Don't show duplicate databases" in the preferences menu available under

the \File" pulldown.

The next step is choosing a section of the database. Not all databases have section; if the Section pulldown in

the menu bar is grayed out, this step can be omitted. xmbase-grok normally loads its string table containing

the cards from a �le ending with the extension .db, usually with the same directory and root name as the

.gf �le. If this .db �le is a directory, xmbase-grok recursively loads all �les ending with .db in this directory,

and combines them into one database in memory. Each �le becomes a section. By default, all sections are

displayed after loading a database, but the Section pulldown allows restricting the summary listing to a

single section (�le). To create a new section, choose \New..." in the Section pulldown; if the database did

not have sections until now all its cards are put into the new section. Otherwise, the new section is created

empty. There is no way to delete sections, other than using a shell to delete the �le named sectionname.db

in the database directory.

The main window now displays all cards in the chosen database, or section of the database if chosen, in the

summary listing. To display any card listed in the summary, press on this line. The card appears in the

bottom part of the window and can now be edited (unless the database �le was read-only, or the application

author has restricted write access). Text entry �elds normally have a pink background; read-only text �elds

have a gray background.

There is a special multi-line version of text entry �eld called a note, which always has a gray background

regardless of its writable status. On some systems it is necessary to press in the upper left corner of the

inset area, or on already existing text to get a cursor.

Below the card, there are buttons to skip to the next or previous card, to create a new card (New), to

duplicate the currently displayed card, or to delete the currently displayed card. New cards may be created

with defaults speci�ed by the application designer. If the database has sections, there is an additional buttons

that moves the card into a di�erent section.

xmbase-grok can optionally display a row of letter buttons below the summary area that restrict the summary

to display only cards whose �rst text �eld begins with the selected letter. Case is not distinguished; leading

white space and punctuation is ignored. The row of letter buttons can be enabled or disabled with the

\Enable search by initial letter" mode in the preferences menu that can be called with the \Preferences"

choice in the \File" pulldown. The \Letter search checks all words" mode in the same menu extends the

letter search to check all words in the �rst text �eld of each card, instead of just the �rst.

2

Searches and Queries

The Search text entry �eld near the top of the window allows entry of a search string. Case is not signi�cant.

The entire string is searched for; the number of blanks and punctuation is signi�cant. The search string is

not a sequence of keywords. This type of search is equivalent to what the Unix command fgrep -i does.

More sophisticated queries can be performed by entering a query expression beginning with (or f. For a de-

scription of the syntax and the di�erence between parenthesized and braced expressions, the the \Expression

Grammar" chapter. To get a feel for expressions, enable \Show query search expressions" in the preferences

menu and choose a canned query from the \Query" pulldown. The query expression will be shown in the

Search text �eld and can then be edited there.

The Query pulldown always begins with the \All" choice that puts all cards in the database, or all cards in

the current section if one was selected with the Section pulldown, into the summary listing. The application

designer may prede�ne canned queries (using the \Queries" button in the form editor) that appear in the

Query pulldown.

If the \Incremental searches and queries" mode in the preferences menu is enabled, each new search or query

only checks the cards already in the summary, thus narrowing the previous search or query. To return to

a complete listing, choose \All" in the Query pulldown. If the incremental mode is disabled, all cards are

checked.

Printing

The File pulldown has a \Print...' choice that pops up the printing menu. It allows selecting the cards to

print, the output format, the output quality, and the output device. Medium quality uses overstrike Ascii to

simulate boldfacing and underlining as supported by many programs such as more and most printer drivers.

It uses character-backspace-character or underbar-backspace-character sequences to highlight �eld names

and header lines.

If \Printer" is chosen as output device, the printout is sent to the Unix command line speci�ed in the

preferences menu. Typical print spooler strings are \lp" (on System V) or \lpr" (on BSD systems). It is also

possible to enter shell commands such as \cat i /dev/tty". The PostScript printer is speci�ed separately

because a RIP program or special lp options may have to be speci�ed; this is currently not used because the

\PostScript" quality choice in the print menu is not yet implemented.

3

Miscellaneous

When a database is changed, the changes are not immediately written to the database �le (with the .db

extension). It is written when \Save" or \Quit" in the File pulldown is chosen, or when a new database

is chosen from the Database pulldown. Under mwm-based window managers, double-clicking the top left

corner button in the window decoration also saves, but there may be window managers that do not support

the necessary WM protocols for this. The status line below the search text �eld displays \(modi�ed)" if the

database has been changed but not written back.

Note that xmbase-grok does not attempt to sequence database accesses. It does not protect databases against

simultaneous accesses. Although standard �le locking is used during read and write operations (which may

or may not work across NFS), nobody stops two users from reading the same �le, then both modifying it,

and writing it back; one of the two changes will be lost.

A useful feature is the \Current database" choice in the Help pulldown. It lists all known information about

the current database, including the names and paths of all loaded �les and their sizes.

In case of trouble, it is strongly recommended to read the other help texts available under the Help

pulldown, especially the \Troubleshooting" section. The Help pulldown will only work if the grok.hlp �le is

installed in the directory speci�ed in the GLIB macro in the Make�le (Imake�le, or Make�le.alt), by default

/usr/local/lib.

Creating and Editing Forms

xmbase-grok distinguishes databases and forms. A database is an array of unformatted data, while the form

speci�es the structure of the data and describes how to display it in a card. The standard user interface

that comes up when xmbase-grok is started deals with database presentation and modi�cation; to edit the

presentation, or to create a new database, start the form editor from the File pulldown in the main window.

The form editor is a separate window that is rather more complicated than the standard database user

interface. It is basically a simple UI builder that allows the user to create and position UI elements in a

card.

4

General Setup

The �rst step when creating a new database is choosing a form name. This is the name that will appear in

the Database pulldown in the main window (actually, the pulldown should be called Form, but I fear that

would confuse casual users). Every form references a database whose contents it presents; this name must

also be chosen. Typically, both names are the same.

Both the form name and database names are also the �le names the form and the database will be stored

in. The form name gets the extension \.gf", and non-procedural databases get the extension \.db" tacked

on if the names are not fully quali�ed (i.e., do not begin with \/" or \�"). If the database is procedural,

the database �le is a script, and has no .db or any other extension. This script is executed to read or write

data.

When a database or form is read, the path it was read from is stored; when the database or form is changed,

it is written back to that path. When a new database is created, and its name does not begin with \/" or

\�" as de�ned in the second line of the form editor, it is stored in the same directory as its form �le. The

default is always �/.grok. The Help!Database popup shows which paths are actually used.

The database is a two-dimensional array of strings. The rows are called cards, and the columns are called

�elds. Rows are separated by newlines, and columns are separated by the �eld delimiter. The �eld delimiter

is a colon by default, but can be changed to any character. The button accepts characters, octal constants

nnnn, and the tab character nt. Any character other than n0 and newline can be chosen; xmbase-grok will

properly escape the character when it appears in a database string. Severe chaos may result if the delimiter

character is changed when the database already contains data.

Databases can be marked read-only. A user accessing a database through a form that is has the read-only

ag set will not be able to change any cards, and will not be able to write back.

A procedural database does not read a �le, but calls a script that provides the data in the same format that

the �le would contain. If the procedural button is turned on, the referenced database name is the name

of the script, not of any database �le. It may contain options. When the database is read, xmbase-grok

appends the option "-r" (read) and the form name as shown in the Form name button (without prepending

a path or appending an extension). When writing, -w is appended instead of -r. The script must print the

data to stdout if -r is speci�ed, or must accept the data from stdin if -w is speci�ed, separating columns

with the �eld delimiter character and separating rows with newlines. If the delimiter or newlines appear in

as part of a data string, it must be escaped with a backslash.

A comment can be speci�ed that should give the name of the author of the form, or special caveats. The

comment is displayed only in the form editor window.

5

Creating a Card

After the general setup is done, �elds can be arranged on a card \canvas", which has the same size and

layout as the �nal card will have, but doesn't look as nice and shows extra information. Fields appear as

blue rectangular boxes, some of which are divided in the middle (depending on the �eld type). The current

�eld, whose speci�cation is displayed in the form editor window. A �eld can be moved by left-clicking

somewhere inside the �eld (but not too close to an edge) and dragging. The size can be changed by dragging

one of the four edges, and the divider can also be dragged. Fields should not overlap. The card canvas can

be resized; �elds should not overlap the canvas window edges.

The canvas is divided in two parts by a horizontal fat line. The divider can be moved vertically by dragging

the little square that initially appears near the top right corner of the canvas. Everything above the divider is

the static part; everything below the divider is the card part. The card part displays one row of the database

if one is selected; this information changes frequently whenever a search is performed or a row is chosen from

the summary.

The static part does not normally change, it is intended for static data such as the average of all �elds, a

chart displaying statistics, or buttons. This part is not entirely static because entering new cards or resorting

the database may change data, but it is not bound to a particular card, and it remains accessible if no card

is chosen. This makes it a good place to place form switch buttons that would otherwise become unavailable

when no card is displayed.

There are several types of �elds. Not all of them store data in the database; some are decorative or display

computed information.

Input This is the main type of �eld. It displays an editable (unless turned o�) string in the database,

along with a label. Input �elds should not be put into the static part of the canvas.

Time A variation of the Input �eld. The database representation is a number of seconds. It is

displayed as a date, as a time, as both date and time, and as a duration. The �rst three assume

the database string to be a number of seconds since January 1, 1970; the last simply assumes

a number of seconds up to 86399 (one day minus 1 second). When a string is entered into

a Time �eld, it is converted to the numeric representation, reformatted, and reprinted. Time

�elds are useful because they can be used in expressions for calculation; expressions always see

the numeric database string. Time �elds should not be put into the static part of the canvas.

Note A note is a multi-line Input �eld. It should be used only for multiline text input because it

cannot be tabbed over, and because pressing Return when entering data into the card into a

Note actually inserts a newline, rather than skipping to the next �eld as an Input-type �eld

would. Note �elds should not be put into the static part of the canvas.

Choice Unlike all other types, many choice �elds reference the same database string. They all must

have the same summary column, the same database column, and the same internal �eld name

(these three are buttons in the form editor). They di�er only in the Choice/
ag code. xmbase-

grok always makes sure that only one of the choice �elds with identical internal �eld names can

be active at any time; the database string then matches the Choice/
ag code of that �eld. Most

attributes of a Choice item, when changed, are copied to all other Choice items that have the

same internal name. Choice �elds should not be put into the static part of the canvas.

Label Labels are purely decorative. They print an arbitrary one-line string at a position in the card.

There is no associated database string. Labels are rarely needed because most of the other

types come with their own built-in label parts. The label is static, expressions cannot be used.

Print Print �elds are like Input �elds, but no text can be entered. Unlike labels, they can display

an expression speci�ed in the Input Default button of the form editor. This can be used to

display a running average or sum in cards, or display other computed information. There is

6

no associated database string. Print �elds are useful in both the static and card parts of the

canvas.

Flag Flags are boolean database strings: the string either matches the prede�ned string (true), or it

is empty (false). (In fact, a string that doesn't match is also considered false, but this is not

part of the normal operation.) The string that constitutes true is speci�ed with the Choice/
ag

code button in the form editor.

Button Buttons have an associated action expression that is executed when the button is pressed. This

action could start a shell script, for example. Buttons are not associated with any database

string, but the expression can access one. For example, a database of demo programs can have

a button that executes the program. The returned string is executed, there is no need to use

the system keyword unless nesting is desired. Note that the action expression is the only type

of expression that may contain switch statements; see the Expression Grammar chapter for

details. It is often a good idea to put buttons in the static part of the canvas.

Chart Charts display data as bar or line charts. The X axis is divided into one slot per row in

the database; the Y axis depends on the values computed from those rows (X and Y may be

exchanged). Each chart contains one or more components. A component computes values that

is plotted in the chart; a chart may display more than one value. For example, an expense

account chart may display a stacked bar chart consisting of di�erent color-coded types of costs,

each described by a component. There are many variations for con�guring charts and their

components. Charts should be put into the static part of the canvas.

Each �eld has a number of parameters that depend on the type. The most important is the internal �eld

name. It must be unique, except for choice �elds which are grouped by assigning common internal �eld

names. If the �eld references a database string, the internal �eld name also names the database string. The

internal �eld name can be used in expressions to read the database string. For example, suppose you have

a database of backup tapes, you may have an Input �eld with an internal �eld name capacity, and another

Input �eld named used. You could then add a Print �eld whose Input Default expression is (capacity -

used). The Print �eld then displays the remaining free space on each tape, even though the database

only contains total capacity and used capacity. Another Print label may have an expression (sum(used)),

which displays a running total of all tapes' contents. sum is one of a group of functions that loop over all

cards rather than just referencing the current card; see the Expression Grammar chapter for details. It is

also possible to reference a database �eld for which there is no �eld description in an expression; in this case,

the �eld is referenced by number. Fields in the database are numbered left to right, beginning with 0.

The next button in the form editor is the database column. It needs to be speci�ed only for �eld types that

display the column and allow entry into the column. These �elds are \windows" into the database; there is

normally one �eld for each database column. All �elds that do not reference a database column are merely

decoration, no change of the database is possible through such a decorative �eld (although the decorative

�eld may read the database, as Print �elds do). This relation between �elds and database columns also

serves to give a symbolic name to database columns; these symbolic names can be used in expressions by

pre�xing them with an underscore. (It is also possible to use the column number in expressions, but that is

less convenient).

The main window has three parts, a summary, the static area, and the card. The summary contains one line

per card, while the card contains the entire card's information as de�ned with the form editor and the card

canvas. The static part is optional and programmed in the same way as the card. The Summary column and

Width in summary buttons in the form editor determine which �elds also appear in the summary; this is a

subset of the �elds that reference a database column (decoration �elds can not be put into the summary).

The two buttons specify the order in database column and the width in characters. Two blanks are inserted

between �elds in the summary automatically. The summary has a title; it can not be speci�ed directly but

is taken from the Label text of the �eld.

7

Here is a brief summary of all buttons in the form editor that specify a �eld in the card:

Field type The type of a �eld is entered here. See above for a list of available types

and what they do.

Searchable The main window contains a Search input button. It searches through all

cards and puts all cards containing the search string into the summary.

Fields that are not searchable are excluded from the search.

Read only The user cannot change the database string referenced by a �eld that is read-

only. This is useful if there are two forms referencing the same database,

one for you and one for the unwashed masses with lots of read-only
ags set.

The read-only
ag can also be set for the entire database with the button

near the top of the form editor window; setting that
ag overrides all �eld

read-only
ags.

Not sortable The �eld will be omitted from the Sort pulldown in the main menu.

Default sort When the �le is read in from disk, it is sorted by the �eld that has this

ag on. Setting it in any �eld will clear the Default sort
ag in all other

items automatically. If no �eld has the Default sort
ag, the �le will not

be sorted when it is read. It is possible but not recommended to have both

the Default sort
ag and the Not sortable
ag on in the same �eld.

Internal �eld name All �elds have an unique name. Choice names are not unique, choice �elds

are grouped by a common name. If the �eld references a database string,

the internal �eld name also names the database column, which can then be

accessed in expressions symbolically.

Database column If the �eld references a database column, this button says which one, 0 being

the �rst column. If not, this button is grayed out. The column number must

be unique, except for choice �elds which are grouped by a common database

column (and a common internal �eld name, too).

Width in summary If the width is nonzero, the database string referenced by the �eld will

appear in the summary, with as many characters as speci�ed. Two blanks

are appended. The summary always uses monospaced Courier to make

columns line up vertically.

Summary column If the width is nonzero, this value speci�es the order of �elds in summary

lines. No two �elds may have the same summary column number, but there

may be gaps.

Choice/
ag code The string that Flag and Choice �elds store in the database, if active. No

two Choice �elds with the same internal name may have the same code.

Shown as If this string is set, it will be displayed in the summary in place of the

choice/
ag code. Basically, it is a mnemonic name for the choice/
ag code

that a user can understand.

Time format Time �elds have four di�erent formats, as described above. The format

controls what gets printed into the card, and how user input is interpreted.

Label text All �eld types come with some kind of text string that is printed into the

�eld in the card. This string is always literal, it cannot be an expression.

Label justi�cation Labels can be centered, left-aligned, or right-aligned. This is not shown in

8

the card canvas, press the Preview button to see the e�ect.

Label font The font used for the label. Five fonts are available.

Max input length The maximum number of characters than can be entered into an Input,

Time, or Note �eld. The default is 100 for Input and Time �elds, and 10000

for Note �elds. Always make sure that note �elds have a su�cient maximum

length. This number is passed to the Motif widget to limit input length,

but does not lead to increased memory usage for the database.

Input default For Input, Time, Flag, and Choice �elds, this �eld provides the defaults

when a new card is added to the database. It can be an expression. For

Print �elds, the Input default speci�es what gets printed into the inset area

of the �eld; input default is actually a misnomer because Print �eld texts

cannot be input and are evaluated whenever the database changes, not just

when a new card is added. In general, Choice �elds should always have

a default. If the �eld has type Time, the input default expression should

evaluate to a number of seconds, not to a string containing a date. For

example, to make the Time �eld default to today, use (date), not date.

Input justi�cation Input can be centered, left-aligned, or right-aligned. This is not shown in

the card canvas, press the Preview button to see the e�ect.

Input font The font used for the input area. Five fonts are available. It is recommended

to use Courier for Note �elds (and, by extension, for Input and Time �elds)

because printing functions print notes using a �xed-width font.

Grayed out if If the named expression evaluates to true, the �eld is grayed out and cannot

be used to alter the database. The expression is evaluated every time the

database changes.

Invisible if If the named expression evaluates to true, the �eld is excluded from the

card. The expression is evaluated only once, when the database is read

from disk. This can be used to hide entries if the wrong user has read the

database. Invisibility does not a�ect the summary.

Read-only if If the named expression evaluates to true, the �eld is read-only. The ex-

pression is evaluated only once, when the database is read from disk.

Skip if Normally, pressing Return in an Input or Time �eld advances the cursor

to the next �eld (�elds are ordered by their bottom left corner, in Y-major

order). If the named expression of the next �eld evaluates to true, the �eld

is skipped and the cursor is put elsewhere. This expression is evaluated

every time return is pressed in the previous �eld. A constant expression

such as true is also useful.

Action when pressed If the button is pressed, this expression is evaluated. The result is ignore-

d. Typically, the expression is the name of a shell script. The expression

may use the switch statement, which switches to another database and/or

performs a query on all cards.

Chart
ags Not documented yet. This part of the menu is still under development.

Some of the above accept expressions. An expression begins with a parenthesis, a brace, or a dollar sign.

Everything else is a literal string. Parentheses and braces are numeric and string expressions, respectively; a

dollar sign followed by an environment variable is a shortcut for the same sequence enclosed in braces. The

9

system statement should be used sparingly, because some expressions (such as the grayed-out-if expression)

are evaluated frequently. See the Expression Grammar section for details.

Buttons

There is a row of buttons in the form editor for various operations:

Queries Starts up a window that allows entry of standard queries, as name/expression pairs. The

name is what will appear in the Query pulldown in the main menu; the expression is what

gets executed if the name is selected in the pulldown. When a name is selected, the expression

is applied to all cards in the database, and those that return true are put into the summary.

For example, assuming your database has an Input �eld with the internal name value,

the query expression (value i avg(value)) will select all cards whose value is above

average.One of the queries can be selected as the default query that will be performed when

the database is read from disk.

Def Help The main window has a help button in the lower left corner. This button pops up a help

window with some generic info about xmbase-grok. With the Def Help button, more text

can be entered that will be appended to the generic help text. The text should explain the

card, how to use it, and what the �elds mean.

Debug This button checks the consistency of all �elds, and reports con
icts such as non-unique

internal names or redundant choice
ags. At this time, expressions are not checked. If the

Debug button reportrs nothing, the no problems were found. The Done button always does

a debugging run �rst, and refuses to exit if errors were found.

Preview The card canvas shows the layout of �elds in the card, as boxes that show additional infor-

mation such as type, database column,
ag/choice code, and summary column. This does

not re
ect the �nal card that the user will see very well; in particular, whether a label string

�ts into the �eld on the card canvas does not mean that the same label will �t into the �nal

card. Preview shows precisely what the card will look like.

Help Print general help information.

Cancel Discards all operations done with the form editor since it was installed, and removes the

form editor window after asking for con�rmation.

Done Check all �elds for consistency. If no problems are found, the form �le is written. The �le

name is taken from the Form name button at the top of the form, with �/.grok prepended

and .gf appended if appropriate.

Add Adds a new �eld to the card. Its type, parameters, and position on the card canvas are

chosen based on the currently selected card, so it's a good idea to select a �eld that is

similar to the new one before pressing Add. If the card canvas has no free space below the

bottom �eld, the new �eld may be placed under the bottom �eld where it can't be seen;

it is generally a good idea to start with a card canvas that is too large and resize it to the

correct size after all �elds have been added and positioned.

Delete Delete the currently selected �eld. There is no Undo function to get it back.

10

Expression Grammar

Expressions are used for queries, for defaults of card items, and for printing expressions into cards. They

are set in Database Edit mode; a normal user does not deal with expressions directly.

Expressions deal with two data types, strings and numbers. Expressions or sub-expressions returning strings

are enclosed in braces; expressions or sub-expressions returning numbers are enclosed in parentheses. There

are many built-in operators and functions; most of them can be used only in either string or numeric context.

Numbers begin with a numerical digit or a period, and are in standard integer,
oating-point, or exponential

notation. String literals are enclosed in double quotes. Conversions from numbers to strings use the %g

format (unless printf is used); conversions from strings to numbers skips leading blanks and converts like

atof. Trailing non-numeric characters are ignored.

Expressions are interpreted, not compiled. This means that all parts of the expression are evaluated, ?:, &&,

and jj do not short-circuit.

In the following tables, n stands for a number ot a numerical expression, and s stands for a literal string or

a string expression. Note that some operators, such as == and date, appear in both contexts.

Numerical Operations

Divisions by zero return 1. Arithmetic operators use standard C precedences. Bitwise operations operate on

32 bits only.

Operator Type Operation

(n) n Number

f s g n In number context, convert string to a number

n ? n : n n If the �rst number is nonzero, return the second number;

otherwise, return the third number

n , n n Evaluate both numbers, return second

- n n Unary minus

! n n Unary boolean NOT

� n n Unary bitwise NOT

n + n n Add two numbers

n - n n Subtract two numbers

n * n n Multiply two numbers

n / n n Divide two numbers

n % n n Calculate modulo of two numbers

n & n n Calculate bitwise AND of two numbers

n && n n Calculate boolean AND of two numbers

n | n n Calculate bitwise OR of two numbers

n || n n Calculate boolean OR of two numbers

n ^n n Calculate bitwise XOR of two numbers

n << n n Calculate bitwise left shift

n >> n n Calculate bitwise right shift

n == n n 1 if both numbers are equal, 0 otherwise

n != n n 1 if both numbers are not equal, 0 otherwise

n < n n 1 if the �rst number is less than the second, 0 otherwise

n > n n 1 if the �rst number is greater than the second, 0 otherwise

n <= n n 1 if the �rst number is less than or equal to the second, 0 otherwise

n >= n n 1 if the �rst number is greater than or equal to the second, 0 otherwise

sqrt (n) n Square root of a number

11

exp (n) n Exponential function, e

n

log (n) n Decimal logarithm, log

10

n

ln (n) n Natural logarithm, log

e

n

pow (n , n) n First number raised to the second, n

m

sin (n) n Sine of a number, sinx

cos (n) n Cosine of a number, cos x

tan (n) n Tangent of a number, tanx

asin (n) n Arc sine of a number, sin

�1

x

acos (n) n Arc cosine of a number, cos

�1

x

atan (n) n Arctangent of a number, tan

�1

x

atan2 (n , n) n Quadrant-aligned arctangent

len (s) n Length of a string

bound (n , n , n) n The �rst number bounded by a minimum (second number) and

a maximum (third number)

String Operations

Note that string comparisons return strings, and must be enclosed in braces fg if && or || or other

numerical operators are used on the result.

Operator Type Operation

f s g s String

(n) s In string context, convert number to a string

s ; s s Evaluate both strings, return second

s . s s Concatenate strings

s ? s : s s If the numeric value of the �rst string is nonzero, return the second string;

otherwise, return the third string

s == s s Return "1" if the two strings match; otherwise, return "0"

s != s s Return "1" if the two strings do not match; otherwise, return "0"

s < s s Return "1" if the �rst string is lexicographically less than the second

string; otherwise, return "0"

s > s s Return "1" if the �rst string is lexicographically greater than the second

string; otherwise, return "0"

s <= s s Return "1" if the �rst string is lexicographically less than or equal to the

second string; otherwise, return "0"

s >= s s Return "1" if the �rst string is lexicographically greater than or equal to

s in s s Return "1" if the �rst string is contained in the second string; otherwise,

return "0"

chop (s) s Return the string with the trailing newline, if any, removed

substr (s , n , n) s Return a substring of the �rst string. The �rst number is the start index

and the second the length. A negative index counts from the end.

printf (args) s Format and return a string; args is a comma-separated list of expressions.

Compound expressions must be enclosed in () or f g.

12

Variables

Variables are letters a through z that can hold strings or numbers. When a variable is assigned to, the result

of the assignment is returned. All variables are reset to the empty string (or 0) when a database is loaded

from disk.

Operator Type Operation

var s ,n Value of a variable

var = s s Assign string value to a variable

var = n n Assign numeric value to a variable

var .= s s Append string to a variable

var += n n Add a number to a variable

var -= n n Subtract a number from a variable

var *= n n Multiply a variable by a number

var /= n n Divide a variable by a number

var %= n n Assign modulo with a number to variable

var &= n n Perform logical AND with a variable

var |= n n Perform logical OR with a variable

var ++ n Post-increment variable

var -- n Post-decrement variable

++ var n Pre-increment variable

-- var n Pre-decrement variable

Database Access

Database rows (cards) can be accessed by providing an index in brackets. Without brackets, the current card

(this) is assumed. Database columns are named. The name must always be pre�xed with an underscore

(). In place of the name, the �eld can be selected with a column number (which must also be pre�xed with

an underscore), beginning at 0. Only �elds that store data in the database can be accessed (types Input,

Time, Flag, and Choice); this excludes �elds of type Label and Print.

The avg, dev, min, max, and sum operators di�er from all other operators: they don't reference a �eld in the

current or any single card, they operate on a �eld in all cards by accessing an entire column of the database.

These operators are also available as qavg, qdev, qmin, qmax, and qsum, which apply the calculation only

to the result of the last query (i.e., to the cards displayed in the summary). Finally, the savg, sdev, smin,

smax, and qsum variations are applied to all cards in the current section; if there are no sections or if all

sections are selected, all cards are considered.

The switch statement is legal only in Action when pressed expressions for Button-type �elds in the form

editor. It does nothing except as action for a button in a card. It switches xmbase-grok to a new form

as if the Database pulldown had been used (see the Editing Forms chapter for details about the di�erence

between databases and forms. The �rst argument is the new form name, the second argument is the query

expression or search string that determines which cards are displayed in the summary initially. The possible

combinations are:

search("", "")

Does nothing.

search("", "*")

Keep the current form, and put all cards in the summary.

search("", "fexprg")

Keep the current form, and put all cards in the summary for which expr returns something other than

0 or the empty string.

13

search("", "(expr)")

Equivalent to the previous, except that the returned string is converted to a number, which is checked

for nonzero values.

search("", "string")

Keep the current form, and put all cards in the summary whose searchable �elds contain string.

search("name", "")

Switch to form name, and display all cards in the summary.

search("name", "xxx")

Switch to form name, and then perform a query. xxx stands for any of the above query expressions.

Because short-circuiting doesn't work, switch can't depend on a conditional, but its two arguments can.

switch returns the empty string, which means that the button won't execute a command as usual; if this

is overridden by appending a semicolon and another string expression, the command is executed after the

database switch. To execute a script before switching, prepend a system statement and a semicolon to the

switch statement (the switch is done after the expression is completely evaluated). To switch back to the

previous form, use the prevform statement.

Operator Type Operation

�eld s ,n A �eld from the database, of current card

�eld [n] s ,n A �eld from the database, from any card

this n The number of the current card, 0 is �rst

last n The number of the last card, 0 is �rst

avg (�eld) n Average of a �eld in all cards

qavg (�eld) n Average the current query result

savg (�eld) n Average the current section

dev (�eld) n Standard deviation of a �eld in all cards

qdev (�eld) n Std. dev. of the current query result

sdev (�eld) n Std. dev. of the current section

min (�eld) n Minimum value of a �eld in all cards

qmin (�eld) n Minimum of the current query result

smin (�eld) n Minimum of the current section

max (�eld) n Maximum value of a �eld in all cards

qmax (�eld) n Maximum value of the current query result

smax (�eld) n Maximum value of the current section

sum (�eld) n Sum of a �eld in all cards

qsum (�eld) n Sum of the current query result

ssum (�eld) n Sum of the current section

dbase s The name of the accessed database �le

form s The name of the accessed form �le

section s The name of the current section, or the empty string

section n The number of the section the current card is in, or 0

section [n] s The name of section n

section [n] n The number of the section card n is in, or 0

prevform s The name of the previous accessed form �le

switch (s , s) s Database switch and/or query; see above

14

Operating System Access

Operator Type Operation

system (s) s Execute a shell command and return the result as a string

$ envvar s Return the value of the environment variable envvar

host s The host name of the local host

user s The user's login name

uid n The user's numeric user ID

gid n The user's numeric group ID

access (s , n) n 1 if the �le name exists (if the number is 0), or if it can be accessed

for execution (1), writing (2), and/or reading (4). See access(3).

beep s Ring the terminal bell, return a null string

error (args) s Format a string like printf, print it in a window, return a null string

Time Conversion

Dates and times are stored as number of seconds since January 1, 1970. Durations are stored as number of

seconds. Note that this means thata time is a signi�cantly larger number than a duration, even if both have

the same hh:mm string representation. The representation depends on the date and time format selected in

the Preferences menu.

Operator Type Operation

time s The current time as hh:mm or hh:mm[ap] string

time (n) s Extract time part of the number, and format as hh:mm or hh:mm[ap] string

date s Today's date as dd.mm.yy or mm/dd/yy string

date (n) s Extract date part of the number, and format as dd.mm.yy or mm/dd/yy string

duration (n) s Convert a number of seconds to a hh:mm string

date n Current time in seconds since January 1, 1970

year (n) n Extract the (four-digit) year from a time

month (n) n Extract the month 1..12 from a time

day (n) n Extract the day 1..31 from a time

hour (n) n Extract the hour 0..23 from a time

minute (n) n Extract the minute 0..59 from a time

second (n) n Extract the second 0..59 from a time

julian (n) n Extract the julian date 0..365 from a time

leap (n) n 1 if the time is in a leap year, or 0 otherwise

15

Files and Programs

This is a complete list of all �les and directories required for xmbase-grok:

�le location contents

grok GBIN main executable

grok.hlp GLIB ascii help texts

Manual.ps GLIB this PostScript manual

grokdir GLIB demo application directory

.grok � default form and database directory

.grokrc �/.grok con�guration data for xmbase-grok

grok.xpm LIBDIR X pixmap icon, optional

Grok.icon �/.icons full-color icon, SGI systems only

\GBIN" stands for the directory speci�ed in the GBIN macro in the Imake�le or Make�le.alt, by default

/usr/local/bin. \GLIB" is also in the Imake�le or Make�le.alt, the default is /usr/local/lib. \LIBDIR" is

provided by imake and depends on the system.

Every xmbase-grok application consists of one \form" �le and one or more \database" �les. The form �le

describes the card layout and the data interpretation; they have the extension .gf. The name of the form

�le without the extension is put into the Database pulldown in the main window. The default location for

form �les is the �/.grok directory.

The form references data �les. Normally, they have the same name as the form �le but with the extension

.db, and are also stored in the �/.grok directory. If the resulting path references a directory instead of a

�le, the contents of this directory is searched. Every �le in this directory also ends in .db and becomes a

section that is put into the Section pulldown. If the directory contains subdirectories, they are searched for

more .db �les recursively.

xmbase-grok searches for form �les in four locations, in the following order:

1. the current directory,

2. ./grokdir,

3. �/.grok,

4. GLIB/grokdir

All the form �les ending with .gf found in these directories are put into the Database pulldown. Form �les

from di�erent directories are separated by an etched line. xmbase-grok attempts to recognize and eliminate

duplicate form �les found over two di�erent paths, but puts duplicate form �les that it thinks are in di�erent

directories into the pulldown multiple times. This can be disabled with the preferences menu.

16

Contents

Introduction 1

Starting xmbase-grok 1

The Main Window 2

Searches and Queries 3

Printing . 3

Miscellaneous 4

Creating and Editing Forms 4

General Setup 5

Creating a Card 6

Buttons 10

Expression Grammar 11

Numerical Operations 11

String Operations 12

Variables 13

Database Access 13

Operating System Access 15

Time Conversion 15

Files and Programs 16

i

